KSG IAS - KSG India (Official Telegram Channel)
15.8K subscribers
16.5K photos
287 videos
1.72K files
21.7K links
We welcome you all to KSG IAS. We are a well known UPSC Coaching Institute in India preparing candidates for the Civil Services Examination at all three stages of the exam such as Prelims, Mains and Interview. Call 9654376543 9990999707 For More Details.
Download Telegram
States to get medical device parks
The government has given approval for setting up four medical device parks with a view to support Make in India initiative and provide world-class products at an affordable price for treatment.
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/21950-states-to-get-medical-device-parks.html
#CFC #AndhraPradesh #infrastructure #CommonFacilityCentre

100% FDI in coal mining
India’s move to allow 100 per cent foreign direct investment in coal mining is a “positive move” and a good policy enabler towards the country’s long-term ambition of producing 300 million tonnes of steel per annum.
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/21949-100-fdi-in-coal-mining.html
#FDI #NationalSteelPolicy2017 #environment #India #NSP

Black hole devour another
In a first, researchers have created simulations explaining how the largest of black hole mergers may have happened, showing one may have devoured another “in a ‘Pac-Man-like’ behaviour.”
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/21948-black-hole-devour-another.html
#Blackhole #RIT #gravitational #Earth #gas #space
US, Taliban sign historic peace deal
The United States and Taliban on 29 February 2020 signed a historic peace deal to end the 18-year-long confrontation in Afghanistan. The signing was held in Doha of Qatar between US Secretary of State Mike Pompeo and representatives of the Taliban.
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/22998-us-taliban-sign-historic-peace-deal.html
#Taliban #historic #MEA #NarendraModi #Trump

Third election in Israel
Israelis head to the polls on 2 March 2020 with a sense of deja vu after trying and failing twice in the past year to break the country's political deadlock.
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/22997-third-election-in-israel.html
#election #Israel #BenjaminNetanyahu #DonaldTrump #BennyGantz

SN1 spacecraft blows up
A prototype for SpaceX's Starship super-rocket appeared to burst during a pressure test on its pad at the companys South Texas facility. Footage captured by a Boca Chica resident shows the spaceship, known as SN1, exploding on 28 February 2020 night.
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/22996-sn1-spacecraft-blows-up.html
#SN1 #spacecraft #CCAFS #NASA #SpaceX #moon

Minimoon found orbiting Earth
In the early hours of February 15, two astronomers at the Mount Lemmon Observatory 9,000 feet above Tucson, Arizona, noticed a small asteroid-like object near the Earth. Kacper Wierzchos and Theodore Pruyne from the Catalina Sky Survey saw this object moving against the steady backdrop of the stars.
Read More: https://www.ksgindia.com/study-material/news-for-aspirants/22995-minimoon-found-orbiting-earth.html
#Minimoon #Earth #CD3 #gravitational #NASA
Today's Headlines - 21 July 2023
Unlock mysteries of the cosmos
GS Paper - 3 (Space Technology)

The United States and India have jointly unveiled plans to construct a Laser Interferometer Gravitational-Wave Observatory (LIGO) in India, a major scientific alliance aimed at unravelling the mysteries of the universe. The mega astronomy project, projected to cost Rs 2,600 crore, will study gravitational waves, which are often described as changes in the ‘fabric’ of the universe. The new observatory was among the US-India partnership initiatives.

More about the observatory

The LIGO observatory in India will be built in Maharashtra’s Hingoli district, near the city of Aundha.
The government has acquired 174 acres of land to set up the observatory, which is expected to be operational by 2030.
This will be the third LIGO site in the world. The first two are both in the US, one in the state of Washington and the other in Louisiana.
Other similar instruments that detect gravitational waves include KAGRA in Japan and Virgo in Italy, both of which are smaller than LIGO and have 3-km arms.
The LIGO-India project is a joint collaboration between the Government of India’s departments of atomic energy (DAE) and science and technology (DST), the National Science Foundation (NSF) in the United States, and several other national and international research and academic institutions.
In India, the four institutions leading the project include IUCAA, Gandhinagar’s Institute of Plasma Research (IPR), Indore’s Raja Ramanna Centre for Advanced Technology (RRCAT), and the Directorate of Construction, Services & Estate Management (DCSEM) under the DAE.
Why are gravitational waves important?

Gravitational waves are invisible ripples in spacetime that travel at the speed of light. They were first detected in September 2015 by both the LIGO observatories in the US. Before that, most inferences about the universe were based on observations of electromagnetic energy.
The study of gravitational waves dates back to 1916, when Albert Einstein proposed their existence in his theory of general relativity.
He suggested that massive objects in the sky, such as black holes or neutron stars, can disrupt space-time due to the emission of waves that would be ejected from the source.
Studying gravitational waves can help uncover the history of the universe and understand many more complex mechanisms.
For example, earlier this year, Indian scientists proposed that gravitational waves emitted from black holes could help determine the rate of expansion of the universe.
They suggested that the multiple gravitational waves released from binary black holes reach Earth at various time stamps, which can be used to calculate the expansion rate of the universe.
How does LIGO work?

LIGO is essentially a massive L-shaped instrument, with each arm being 4 km long. Each arm encases a steel vacuum tube called an interferometer.
Laser pulses are shot through each arm and bounced back off a mirror at each end. A detector monitors the timing and movement of these pulses.
When a gravitational wave passes through the detector, the pulses will not return on time. Scientists can use this and other such signals to study gravitational waves. LIGO is highly sensitive and can detect gravitational waves from distant galaxies, hundreds of millions of light years away.
For instance, the first gravitational wave observed by LIGO in 2015, according to the estimates of scientists, was caused by the collision of two black holes about 1.3 billion years ago.

#upsc #news #mysteries #cosmos #Spacetechnology #Laser #Interferometer #Gravitational #Observatory #LIGO #astronomy #Louisiana #NSF #KAGRA #Japan #IUCAA #IPR #DAE #DST #RRCAT #DCSEM #electromagneticenergy #galaxies
Today's Headlines - 16 August 2023
Isro’s space probe to study the Sun
GS Paper - 3 (Space Technology)

The Indian Space Research Organisation (Isro) released images of the Aditya-L1 mission — the space agency’s first attempt to study the Sun. The satellite has reached the Satish Dhawan Space Center (SDSC) in Sriharikota, Andhra Pradesh, for its integration with the launch vehicle, PSLV.

What is the Aditya-L1 mission?

The Aditya-L1 will observe the Sun from a close distance, and try to obtain information about its atmosphere and magnetic field.
It’s equipped with seven payloads (instruments) on board to study the Sun’s corona, solar emissions, solar winds and flares, and Coronal Mass Ejections (CMEs), and will carry out round-the-clock imaging of the Sun.

Why is studying the Sun important?

Every planet, including Earth and the exoplanets beyond the Solar System, evolves — and this evolution is governed by its parent star.
The solar weather and environment affect the weather of the entire system. Variations in this weather can change the orbits of satellites or shorten their lives, interfere with or damage onboard electronics, and cause power blackouts and other disturbances on Earth. Knowledge of solar events is key to understanding space weather.
To learn about and track Earth-directed storms, and to predict their impact, continuous solar observations are needed.
Every storm that emerges from the Sun and heads towards Earth passes through L1, and a satellite placed in the halo orbit around L1 of the Sun-Earth system has the major advantage of continuously viewing the Sun without any occultation/eclipses.
L1 refers to Lagrangian/Lagrange Point 1, one of five points in the orbital plane of the Earth-Sun system. Lagrange Points, named after Italian-French mathematician Josephy-Louis Lagrange, are positions in space where the gravitational forces of a two-body system (like the Sun and the Earth) produce enhanced regions of attraction and repulsion.
These can be used by spacecraft to reduce fuel consumption needed to remain in position. The L1 point is home to the Solar and Heliospheric Observatory Satellite (SOHO), an international collaboration project of NASA and the European Space Agency (ESA).
The L1 point is about 1.5 million km from Earth, or about one-hundredth of the way to the Sun. Aditya L1 will perform continuous observations looking directly at the Sun.
NASA’s Parker Solar Probe, launched in 2018, has already gone far closer — but it will be looking away from the Sun.
The earlier Helios 2 solar probe, a joint venture between NASA and the space agency of erstwhile West Germany, went within 43 million km of the Sun’s surface in 1976.

#upsc #news #headline #ISRO #study #sun #space #technology #india #space #research #technology #aditya #mission #SDSC #satishdhawanspacecenter #srihorikota #andhrapradesh #PSLV #distance #magnetic #corona #solar #planet #weather #earth #repulsion #gravitational #forces #fuel #SOHO #NASA #germany #surface
Today's Headlines - 19 August 2023
JWST discovered Earendel
GS Paper - 3 (Space Technology)

Astronomers have embarked on an extraordinary journey, utilizing the powerful gaze of the James Webb Space Telescope (JWST), to measure the most distant star ever observed - Earendel. This celestial entity came into the scientific spotlight after its discovery by the Hubble Space Telescope in the previous year.

Earendel and history of the universe

The awe-inspiring expansion of the universe since the Big Bang has propelled Earendel's residence to a colossal 28 billion light-years from Earth.
This revelation underscores the dynamic and evolving nature of the cosmos, where space itself unfurls over immense timescales.
Earendel's presence in the distant reaches of the universe was initially pinpointed through the phenomenon of gravitational lensing, a phenomenon where the gravitational pull of a massive foreground object acts like a lens, bending and amplifying the light of a more distant celestial body. This allowed Hubble to identify Earendel's distant glow.
What is Earendel?

Earendel is a distant star that holds the distinction of being the most distant star ever detected.
It was first discovered by the Hubble Space Telescope and has recently been studied further using the James Webb Space Telescope.
Earendel's light has taken approximately 12.9 billion years to reach Earth, meaning that it was shining not long after the universe's creation following the Big Bang.
This star is of significant interest due to its extreme distance and the insights it can provide about the early universe.
JWST's exploration of Earendel

The James Webb Space Telescope, with its unique vantage point and ability to observe in infrared light, built on Hubble's observations.
Employing a similar strategy of gravitational lensing, JWST used the gravitational influence of a cluster named WHL0137-08 to further explore Earendel's mysteries.
The telescope's Near-Infrared Camera (NIRCam) provided captivating insights, revealing Earendel to be a massive B-type star, boasting a temperature more than twice that of our sun and shining with a luminosity a million times greater.
What is JWST?

The James Webb Space Telescope (JWST) is a powerful astronomical observatory developed by NASA in collaboration with the European Space Agency (ESA) and the Canadian Space Agency (CSA).
It is designed to be the successor to the Hubble Space Telescope and is set to provide unprecedented views of the universe in infrared light.

#upsc #news #headline #JWST #discovered #earendel #spacetechnology #telescope #hubble #space #telescope #bigbang #universe #colossal #earth #dynamic #cosmos #history #gaze #journey #billion #massive #gravitational #exploration #NIRcam #influence #cluster #temperature #astronomical #canadian #light #sun